EXECUTIVE SUMMARY OF ## UGC SANCTIONED MINOR RESEARCH PROJECT (F-NO: 47-1075/09 (WRO) ## PROJECT ENTITLED ELECTRON MICROSCOPIC STUDIES ON THE ENDOCRINE GLANDS OF THE INDIAN MALE FRUIT BAT *PTEROPUS GIGANTEUS*, *GIGANTEUS* (Brunnich) DURING REPRODUCTIVE CYCLE # SUBMITTED TO UNIVERSITY GRANT COMMISSION WESTERN REGIONAL OFFICE GANESHKHIND, PUNE BY Mr. Jayesh. N. Papadkar MAHATMA GANGHI ARTS, SCIENCE AND LATE N.P. COMMERCE COLLEGE, ARMORI DISTRIC- GADCHIROLI (M.S.) PEROID: 2010-2012 # EXECUTIVE SUMMARY OF UGC SANCTIONED MINOR RESEARCH PROJECT (F-NO: 47-1075/09 (WRO) "ELECTRON MICROSCOPIC STUDIES ON THE ENDOCRINE GLANDS OF THE INDIAN MALE FRUIT BAT *PTEROPUS GIĞANTEUS*, *GIĞANTEUS* (Brunnich) DURING REPRODUCTIVE CYCLE" **INTRODUCTION:** - Bat considered as highly successful mammals. Considering the worldwide distribution and immense diversity exhibited by member of order Chiroptera. Reproduction in bats is of special interest due to numerous specializations exhibited by this diverse and successful group of mammals. This order exhibit several remarkable facts concerning its breeding habits, but limited attention have been given to reproduction and endocrine study in male bats. Although the endocrine glands play a significant role in regulating reproductive cycle of mammals. Male bats also exhibit diversity in the timing and frequency of their reproductive cycles annually. Considering these facts I sent a proposal through college to UGC on 12 March 2009 with specific purpose for the detailed study entitled Electron Microscopic studies on the endocrine glands of the Indian male fruit bat, Pteropus giganteus giganteus during reproductive cycle. The UGC accepted the proposal on 2 April 2009. The project was in two phases. The first phase consists of collection of the specimens Pteropus giganteus giganteus in every calendar month of 2009 and 2010. For light microscopy endocrine glands fixed in Bouin's fixative and stain with haematoxylene and eosin and cut tissues 5 & 6 μ with Rotatory microtome and stained with double staining technique. Simuulteniously hormonal regulation of testicular cycle, breeding and regressed investigated by measuring serum testosterone and pituitary gonadotropin. Result evaluated by RIA Kit by PITALE Pathology, Nagpur. For electron microscopy tissues, Thyroid, Adrenal, Testis, Pituitary, are sliced and immersed in fresh 3 % glutaraldehyde solution and changed to buffer and send to Jaslok Hospital Mumbai for further observation. The first annual report was sent to UGC on 15 November 2011. Second phase consist of photographs of light microscopy and electron microscopy and hormonal analysis was done while final report of minor research project was prepared. SCOPE OF STUDY: - Endocrinology is a scientific discipline focused on study of endocrine glands, endocrinology is the study of body function, that is, how cell, tissues and organs work mr. J. N. Papadrear Privated I weed Hyutar and how they are integrated together in the whole individual. The study of basic endocrinology is of vital importance in medicine and health science in providing a thorough understanding of normal functioning that allows for a more effective treatment of abnormal or diseased state. It also relates to molecular biology and physiology. MATERIALS AND METHODS:- The specimens of *Pteropus giganteus giganteus* were collected from Armori (Padmapur and Vairagad) about 110 km from Nagpur during every calendar month. Male bats, *Pteropus giganteus giganteus* collected from the fruiting site by making trap net and bats were brought alive to the laboratory with minimum stress. Specimen was weighted on a sensitive spring balance. Bat was at once anesthetized by ether and the thoracic cavity was opened, blood was drawn from the left ventricle for hormonal assay. The pituitary gland of *Pteropus giganteus giganteus* was dissected out after removing the lower jaw and weighted on sensitive electric balance and fixed in formal sublimate fixative. Meantime reproductive tract, testis, thyroid and adrenal glands were taken out one by one gently rolled on the filter paper, quickly weighed and immersed in alcoholic Bouin's fixative for light microscopic studies. For electron microscopic studies, pituitary, testis, thyroid, adrenal tissues were immediately dissected out from animal body were immersed in glutaraldehyde fixative. # Light Microscopy The thyroid, adrenal and testis were fixed in alcoholic Bouin's and washed with 70% ethanol. These glands were weighted on highly sensitive electric balance For histological examination the tissues were dehydrated through the graded series of ethanol cleared in xylene and embedded in paraffin wax at $60\text{-}62^{\circ}\text{c}$. Blocks were prepared, trimmed and cut into thin sections of 5 μ to 6 μ with the help of BMT-9 craft Rocking Microtome. The ribbon containing sections were spread over the slides smeared with Mayer's albumen. Thyroid, adrenal and testes was stained with Ehrlich's haematoxylin and eosin for histological study (Pearse, 1968). Then slides were cleared in xylene and mounted in DPX. The desired stained sections were micro photographed at different planes. The micromeasurements were taken with ocular micrometer. The diameter of seminiferous tubules, interstitial cell of Leydig, thyroid follicles and the adrenal zones, cortex and medulla during > Mr. JN. papadent Bringful Invologistal different phases of reproductive cycle were micro measured with the help of the ocular micrometer. Transmission Electron Microscopy Fixation Thyroid, adrenal glands, pituitary, testis were selected for electron microscopic studies during the sexually breeding and sexually quiescence period. Pituitary, thyroid, adrenal and testis glands were removed from the animal. The pituitary of the animal was dissected out by removing lower jaw and weighed on electric balance. Thyroid, pituitary, adrenal, testis were sliced into 2 mm pieces and immersed in fresh, ice-cold 3% glutaraldehyde solution. The fixation was carried out over a period of 2 to 3 hours at 4°C temperature. A fresh change of cold glutaraldehyde was given at the end of fixation. The tissues were then washed in cold 0.1 M sodium cacodylate buffer over half an hour with 3 to 4 changes to ensure removal of excess glutaraldehyde. Post fixation with OsO4, osmification with 1% OsO4 in sodium cacodylate buffer was carried out for 2 hours at 4°C temperature. # Dehydration Dehydration of tissues was carried out by passing the fixed tissues through a series of graded alcohols of increasing concentration of the dehydrating agent ethyl alcohol in water ending with absolute dehydrating agent. Most epoxy resins are soluble in ethyl alcohol and acetone but they mix much more readily with propylene oxide. Thus prior to embedding, the tissues are passed through two changes of a transitional or intermediate solvent, propylene oxide over a period of half hour. ## Infiltration and Embedding Infiltration and embedding process accomplished the complete and uniform penetration of tissue specimens by the embedding medium. Embedding consists of a complete impregnation of the interstices of a tissue specimen with the medium. This was done as follows. - i) Propylene oxide: Araldite 'A' solution 1:1 for one hour at room temperature. - ii) Fresh Araldite: 'A' solution kept at room temperature in desiccators overnight. Mr. J. N. Papaseur Principal Involvedor # iii) Araldite 'B' solution - is kept for one hours at room temperature. Embedding of tissue blocks was done in BEEM capsule with fresh araldite 'B' solution; the capsules were kept in an oven maintained at 60°C for 24 to 48 hours to complete polymerization. Blocks are freed from the sample by cutting away the plastic; the trimmed with a safety razor blade under a stereomicroscope. Semi thin sections of 1 to 2μ in thickness were cut on an LKB Ultra tome V, with glass knives, prepared on an LKB 7800 B knife markers. These sections were dried on a hot plate (60°C) and stained with 1% toludene blue for 20-30 seconds and observed on the light microscope. The selected areas for ultrathin sections were marked out. The blocks were further trimmed and ultrathin sections or 'thin sections' 600-900 A^o thick corresponding to pale gold colour were cut and sections were collected on 300 mesh copper grids. To enhance the contrast a double staining technique is employed. The grids were subjected to 10% alcoholic uranyl acetate for half an hour followed by lead citrate for 10 minutes. All grids were observed on a JEOL -100S Electron microscope at 80KV accelerating voltage. Microphotographs were taken of the desired samples at different desired planes and different magnifications. All these electron microscopic processes were done in electron microscopy unit at Jaslok Hospital, Mumbai. ## Radio immunoassay (RIA) Serum T₃, T₄, TSH, FSH, LH and Testosterone were assayed by antibody coated test tube assay kits which were obtained from commercial manufacturers. The RIA system is involved the competitive bindings between specific set of antigen to that of the antibodies. Serum T₃, T₄, TSH, FSH, LH and Testosterone were assayed in PITALE DIABETES And HORMONE LABORATORY, NAGPUR. Mr. J. W. Papasuur Prizeipal Intes Hyatar ## RESULT AND DISCUSSION:- Pteropus giganteus giganteus (Brünnich) is an exclusive Indian Pteropodidae fruit bat; this is a seasonally monoestrous species. Microscopic examination of the male reproductive organs revealed that as animal grows there is a progressive increase in the number of layers of spermatogonial cells and the diameter of tubule also increases. The body weight also doubled along with testis weight, during September, October. After this period, the diameter of the seminiferous tubules increases, thus reducing the intertubular area containing groups of interstitial Leydig cells. Each tubule is lined by 2 to 3 layers of cells consisting of peripheral spermatogonia followed by spermatocyte from July onwards the activities in the testis are increased leading to the production of spermatozoa. Body weight is increased during September and October. During this period vigorous spermatogenesis is observed in the testis. From November onwards spermatogenesis in testis ceases and rapid decrease in testicular size and weight is also noticed. The exhausted tubules start shrinking as the tubular lamina is cleared off gametic stages and residual cytoplasmic material. However some partly collapsed seminiferous tubules with few spermatozoa and debris in the tubular lamina are observed during November onwards. After this period testis are regressed and remain sexually quiescence. The number of Leydig cells, the diameter of nuclei and appearance of cytoplasm varies during the quiescence breeding cycle. During the non-breeding season when circulating levels of FSH, LH and testosterone are low, Sertoli cells of spermatogenically inactive testis of bat, do not contain conspicuous stacks of granular reticulum, suggesting reduced protein secretory function, when circulating levels of hormones are very high and testis showing vigorous spermatogenesis, the Sertoli cells show well developed granular and agranular reticulum, large number of mitochondria, suggesting active production of proteins and steroids. Ultrastructure features of Leydig cells suggest that there is a maximum development of these cells in relation to steroidogenic capability during spermatogenic period, when there is a hypertrophy of accessory sex glands, whereas involution of these cells occurs, when testis is aspermatogenic and accessory glands are hyposecretory. Thus, seasonally monoestrous non-hibernating Pteropodidae bat shows complete synchrony in spermatogenic and endocrine function of testis. frydd. Mr. J.N. popabeul primei pal Investigata? The pituitary gland plays a major role in regulating the sexual cycle in bats. The weight of pituitary gland is highest when testis shows vigorous spermatogenesis and is lowest when testis is spermatogenically inactive. The serum PRL, LH and FSH levels are high in sexually active males whereas low levels are observed in sexually inactive males. The large number of prolactin cells, high levels of plasma prolactin and testosterone are responsible for enhancement of spermatogenesis and growth and activity of the accessory sex organs of Pteropodidae bat. STH cells of male bat are associated with high rate of secretory activity. TSH cells are actively participated in secretory activity and exhibit a high rate of oxidative metabolism. Ultrastructural characteristics of ACTH cells during the sexually active period suggest that these cells regulate the synthesis and release of corticoids and androgens from the adrenal cortical cells as judged from the ultrastructural studies of adrenal cortex which are involved in reproductive processes of male *Pteropus giganteus giganteus* bat. The large number of gonadotrophs, increased secretory activity of gonadotrophs, high levels of FSH and LH and Testosterone are observed during the active breeding period. Thus in *Pteropus giganteus giganteus*, male exhibits complete synchrony of spermatogenesis, testicular steroidogenesis, mating behaviour and accessory gland functions under the stimulation of gonadotrophs. Males of *Pteropus giganteus giganteus* exhibit a well defined seasonal cycle of plasma T3, T4 and TSH concentration. The hormonal levels are high during the peak of spermatogenesis and are low during the aspermatogenic period. The weight of the thyroid gland is highest when spermatogenesis is at peak in the testis and is lowest when testis is regressed. The ultrastructural features of follicular cells suggest the low rate of thyroid activity during aspermatogenic period and high metabolic activity during spermatogenesis. The ultrastructural characteristics of parafollicular cells of thyroid suggest that these cells are the sites of synthesis and storage of serotonin and calcitonin. Thus, homeostasis would be maintained through fine regulation of the balance between blood and bone calcium. The thyroid gland has long been recognized as an important modulator of reproductive function and both hyper and hypothyroidisms are associated with reproductive dysfunctions and infertility. The metabolically active follicular cells and high levels of plasma, T3, T4 and TSH in forgest Mr. In. papaseur Plinespal Investigatur spermatogenically active bats suggest that thyroid hormones acting directly or by metabolic effects can influence reproductive processes in male bat. The left Adrenal gland of male bat is always larger in size, weight and vasculature than the right. Adrenal of the sexually active bat shows significant differences of histoarchitecture over the sexually quiescent bat adrenal. Ultrastructural characteristics of cells of adrenal cortex suggest that these cells are participated in steroid biosynthesis and interconversion as well as synthesis of proteins. The primary function of the adrenal gland is to protect the organism against acute and chronic stress. Stress as well as hyper and hypofunction of the adrenal gland is known to suppress reproduction. The ultrastructural studies of adrenal gland suggest that there are both seasonal and stress related changes in adrenocortical and medullary cells of *Pteropus giganteus giganteus*. The well developed zona glomerulosa and fasciculata and enlarged medulla confirm an active participation of adrenal gland during reproductive processes of this bat. The medullary cells of *Pteropus giganteus giganteus* during the sexually quiescence breeding phases are loaded with epinephrine and norepinephrine secretory granules. These catecholamines of medulla of this bat may mobilize glucose, fatty acids for energy production and prepare that heart, lung and muscles of bat for action against stress. The above reports make this *Pteropus giganteus giganteus* bat an interesting model for further studies to find physiological role of endocrine gland on reproductive timing. This bat can be used as a model for study the complex relations of Leydig cells and male accessory sex glands which are normally synchronized. ---- Armori * M.G.Ages Sejonbe & .ate N.R.Commoros Golfege ARMORI, Diote.Godeniell Mr. J. r. Papasur Principal Investigator # **Monthly Peer Reviewed Journal** # Indian Streams Research Journal Seminar on - : "Recent Trends in Biodiversity Conservation and Management" & "Recent Trends in Botany" # Organized By, Department of Zoology & Botany Nilkantrao Shinde Science and Arts College, Bhadrawati # In Collaboration With Indian Association of Aquatic Biologist's (IAAB), Hyderabad # **Held On** 11th January 2013 # CHANGES IN THE THYROID GLAND DURING THI REPRODUCTIVE CYCLE OF THE MALE IN PTEROPUS GIGANTEUS GIGANTEUS DURING BREEDING SEASON. PAPADKAR, J. N. AND DHAMANI, A.A. M.G. College, Armori, N. H. College, Bramhapuri (M.S.) ## Abstract: The present investigation aimed to study the histological characterizations of the thyroid gland of the Pteropus giganteus giganteus. The gland consist of pear shaped randomly distributed micro and macrofollicles with very little interstitial tissues between them. Histologically, thyroid gland consisted of a connective tissue capsule and trabeculae were found extending from the capsule into the substance of the gland, which divided it into lobules. Each lobule consisted of three sized follicles in variable numbers, the large, medium and small. The large follicles were lined by low cuboidal epithelium, while the medium size follicles are lined by cuboidal epithelium cells and the small follicles were lined by high cuboidal to columnar epithelium. The follicles had colloid material in their lumen. The features and sizes of the follicular epithelial cells and the presence of parafollicular cells suggest activity in the thyroid gland of the bat Pteropus giganteus giganteus. Plasma thyroxin (T4) concentration showed a significant seasonal changes with high concentration during breeding and post breeding while low concentration during inactive period. However, the T4 concentration increased from breeding to post breeding phase and decreased in regressed phase. It is suggested that in Pteropus giganteus giganteus positive correlation between thyroid and testicular cycle occurs during active phase of the reproductive cycle when the body weight and testicular activity are also closely correlate. #### KEYWORDS - Anatomy, Thyroid gland, Bat. #### INTRODUCTION The present study was undertaken to correlate changes in thyroid gland of Pteropus giganteus giganteus with the reproductive cycle. Reproduction in Chiroptera is of special interest due to numerous adaptive specializations exhibited by this diverse group of mammals. The thyroid gland has long been recognized as an important modulator of reproductive function. Both hyper- and hypo-thyroidism are associated with reproductive dysfunction and infertility. There is direct effects of thyroid hormones on cellular metabolism and hormone responsiveness have been demonstrated in the gonads and the sex accessory organs. In addition, thyroid hormones appear to play a important role in the expression of stages that occur seasonal reproductive cycles. The thyroid gland of Pteropus giganteus giganteus is composed of two types of parenchymatous cells, follicular epithelial cells (releases T4 hormones) and parafollicular cells (C cells or calcitonin-secreting cells or basal granular cells). Similar observations are reported in Myotis lucifugus lucifugus as the thyroid follicle is made up of three principle components: the lining follicular cells, the luminal colloid and the basal parafollicular cells(Nunez et al.,1969; Kwiechinski et al.,1991).Morphological studies indicate that the thyroid increases activity rainy season, is active throughout the winter, and regresses by summer. Such an activity cycle is commonly found in most seasonally breeding mammals ### MATERIALS AND METHODS Indian male fruit bat, Pteropus giganteus giganteus (Brunnich) found on trees hanging upside down near water sources. This bat was selected for the present study because of its unique reproductive habits. The specimens were collected from Padmapur 40 Kms. from Bramhapuri, District- Chandrapur in Maharashtra (India), throughout the year representing different cycle during (December 2007 to November 2009). They were brought to laboratory alive with minimum stress. The males are easily identified by their external genitelia and golden-brown fur around neck. Mature and large sized adult males were caged for the experiment weight recorded with sensitive balance before they sacrificed. Bats were sacrificed by decapitation using anesthesia. For histological examination thyroid gland from sexually active bats excised out from the body cavity . The weight of thyroid was recorded separately by using highly sensitive monopan electric balance. The tissue fixed in alcoholic Bouin's fixative for 24 hrs, followed by preservation in 70% ethyl alcohol. The tissues were dehydrated through the graded series of ethanol, cleared in xylol and embedded in paraffin wax. The tissues were cut at 5 to 6 μ with the help of Rotary microtome. The sections were stained with haematoxyline and eosin for routine histological examination. The microphotographs were taken with the help of a Lobamade camera attached to the microscope and enlarged to the required size. For histological analysis, sections were selected and measurements were taken with the help of an ocular micrometer. The diameter of the whole thyroid gland, diameter and width of small medium and large follicles during different phases of reproductive cycle were measured. The available data was analyzed by statistical method. ## RESUTLS: Studies of thyroid gland of Pteropus giganteus giganteus revealed that the gland was located near the first ring of trachea and consisted of two lobes. An isthmus connected these lobes to each other. The colour of the gland was reddish brown. Thyroid gland of Pteropus giganteus giganteus shows marked seasonal variations in histology. The thyroid gland consists of follicles of different size during various phases of reproductive cycle. ## THYROID GLAND DURING SEXUALLY ACTIVE PERIOD Bats collected in the month of September and October shows vigorous spermatogenesis in their testis. During this period the thyroid gland appears almost oval in shape and is highly vascularized. In this period gland is composed of numerous follicles of different sizes, smaller and medium sized follicles are predominant while large size follicles are few. These follicles are widely dispersed and separated by interfollicular loose connective tissue. #### 'A' type of follicles: These are present in the thyroid gland of Pteropus giganteus giganteus mainly distributed in the middle and lower part of the gland. Number of these follicles are more than those observed in the thyroid gland of in sexually inactive bat. The 'A' type of follicle is(48u to 50u). The height of epithelial cell of 'A' type of follicle is (10u). The follicles are lined by high columnar epithelium. The spherical shaped and darkly stained nucleus is observed. Nuclear membrane, chromatin material and nucleolus are clearly identified. Cytoplasm is basophilic in nature. The cells are highly secretary. The height of epithelial cells of these follicles is more than the height during sexually (inactive) period. Lumen is very small with incompletely filled bluish-pink colloidal material attached to the follicular epithelial cells having diameter (42u). ## 'B' type of follicles: These are medium sized follicles observed throughout the gland. These follicles are larger in size (145u) than 'B' type of follicles during the sexually inactive(quiescence) period. The follicles are moderate in number but more than 'B' type of follicles during the sexually quiescence period. These are lined by low columnar epithelial cells (8u) and are highly secretary in nature. Nucleus is large and spherical to oval in shape. Chromatin material is darkly stained and eccentric nucleolus is present in nucleoplasm. Cytoplasm is eosinophilic in nature Lumina are filled with homogenous, colloidal material attached to the follicular epithelial cells having diameter (135u). ## 'C' type of follicles: These follicles are mainly seen at periphery of the gland. These are larger in size (215u) than 'C' type of follicles during the sexually inactive period. These follicles are lined by low columnar epithelial cells (6u). These follicles are less in number than the sexually inactive period follicles. Nucleus is small and spherical to oval in shape and darkly stained . Nuclear membrane, chromatin material and nucleolus is clearly visible. Cytoplasm is lightly stained and eosinophilic. The large lumina of these follicles are filled with an eosinophilic pink coloured material (210u). In few follicles lumina is empty. #### Parafollicular Cells: During the active breeding period in the mouth of September, the parafollicular cells are found singly or groups of 4-6 cells within the follicular epithelium and in the interfollicular connective tissue. The parafollicular cells are large with centrally placed large, oval nucleus with rim of chromatin material near the nuclear membrane. The nucleus possesses a centrally placed single nucleolus in the nucleoplasm. Cytoplasm is lightly stained. The number of these cells during the active period are always more than those observed during the sexually inactive period. Table No. 1 | Month of sample | Reproductive
Phase | Concentration of Hormones | | | |-----------------|-----------------------|---------------------------|------------|------------| | | | Т3 | T4 | TSH | | June | Prebreeding | 0.17 ng/ml | 0.10 ng/ml | 0.11 ng/ml | | October | Breeding | 0.19 ng/ml | 0.16 ng/ml | 0.45 ng/ml | | February | Regressed | 0.13 ng/ml | 0.07 ng/ml | 0.28 ng/ml | The seasonal changes of TSH, T3 and T4 have been studied in Pteropus giganteus giganteus. Males exhibit a well defined seasonal cycle of T3 and T4 concentrations. When spermatogenesis begins in the testis the T3 and T4 level was measured as 0.17 ng/ml and 0.10 ng/ml respectively which is prebreeding which reaches to peak when vigorous spermatogenesis is noticed Breeding T3(0.19 ng/ml) and T4(0.16 ng/ml). Later on during regressed phase the level of T3 and T4 becomes moderate measuring 0.13 ng/ml and 0.07 ng/ml respectively. Similarly TSH level were also measured during the different phases of the reproductive cycle. During February when the animals were sexually inactive regressed TSH level was 0.28 ng/ml and there was a increase in the level during pre-breeding period in the month of June (0.11 ng/ml) further it is increased significantly during active breeding period in the month October was measured (0.45 ng/ml) Table no 1. #### DISCUSSION Thyroid is an endocrine gland that secretes hormones including thyroglobulin, triiodothyronine and thyroxin. Thyroxin hormone secreted by this gland plays an important role in metabolism of the body (TURNER, 1966). In Pteropus giganteus giganteus, the location of thyroid gland in the body is similar to other bats like Hipposideros lankadiva (SERAPHIM, E.R., 2004), Taphozous longimanus (NERKAR, 2007) i.e., with the first ring of trachea and consisted of two lobes on both side and an isthmus connecting these lobes. In Pteropus giganteus giganteus the gland appeared reddish brown in colour which is in concordance with the findings of Megaderma lyra lyra, (SONWANE, D.P, 2010). In Pteropus giganteus giganteus the thyroid follicles, colloid and the epithelial cell height show significant variation during the reproductive cycle. During active breeding thyroid gland shows heterogeneous population of follicles. It is mainly composed of medium size follicles and few large and small follicles. The medium size follicles are lined by cuboidal epithelium cells and are synthetically active follicles. The small size follicles are lined low columnar epithelium and synthetically most active follicles. The large size follicles are lined by low cuboidal to squamous epithelium and are synthetically inactive follicles. Histological changes in the thyroid microstructure showing seasonal variation have been reported in bats, Megaderma lyra lyra (SONWANE, D.P, 2010), Taphozous longimanus (SINGH et. al, 2002., NERKAR, 2007), Hipposideros lankadiva (SERAPHIM, 2004). In Hipposideros lankadiva (SERAPHIM, E.R., 2004) thyroid gland is active during active breeding similar to that are reported in Pteropus giganteus giganteus. In present study the thyroid gland is active during breeding period Pteropus giganteus giganteus. After that thyroid gland become active and remains active till early regressed period (SERAPHIM, 2004). In Pteropus giganteus giganteus, thyroid activity decreases in regressed period as indicated by large follicle in the thyroid gland of the regressed bat. #### REFERENCES WOITKEWITSCH, A.S. (1940). Dependence of seasonal periodicity in gonadal changes on the thyroidgland in Sturnus vulgaris L. Comptes Rendus (Doklady) de l'Academie des Sciences, Moscow, USSR 28,741–745. NADLER, N. J., LEBLOND C.P. AND BOGOROCH, R. (1954). The rate of iodine metabolism by the thyroid follicle as a function its size. Endocrinlogy. 54: 151-172. TURNER, C. D., 1966. General Endocrinology, 4th Ed., W. B. Saunders Company, London, UK. NUNEZ, E.A (1971). Secretory processes in follicular cells of the bat thyroid II. The occurrence of organelle—associated intracellular junction during late hibernation. Am. J. Anat., 131 (2): 227-39. KWIECINSKI, G.G., DAMASSA, D.A., GUSTAFSON, A.W. (1991). Patterns of plasma sex hormone-binding globulin, thyroxine and thyroxine-binding globulin in relation to reproductive state and hibernation in female little brown bats. Journal of Endocrinology 128, 63-70. in female little brown bats. Journal of Endocrinology 128,63-70. SINGH, U. P., KRISHNA, A., AND KANWAR P. BHATNAGAR. (2002). Seasonal changes in thyroid activity in the female sheath tailed bat , Taphozous longimanus (Chiroptera: Embalonuridae). Acta Biologica Hungarica , 53 (3): 267-278. SERAPHIM, E.R. (2004): Endocrine Interaction during different phases of the Female Reproductive Cycle in Hipposideros lankadiva (Kelaart), Ph. D. thesis, RTM Nagpur University, Nagpur NERKAR, A.A.(2007): ElectronMicroscopic Studies on theEndocrine gland and Reproductive organs of Emballonuride female bat, Taphozous longimanus(Hardwicke) duringReproductive Cycle. Ph.D thesisR.T.M. Nagpur uni. Nagpur. Fig. 1 T.S of thyroid gland during active breeding. Gland is enclosed in a capsule. Note the presence of large number of medium size follicle ('B'type) and some large size follicle ('C' type). X 100 Fig. 2,3,4 Magnified part of thyroid gland to show large follicle ('C' type) lined with low cubidal epithelium and filled with colloid material. Colloid material is retrieved to the center of some follicles. X 400 Fig. 5 & 6 Magnified part of thyroid gland to show medium size follicles ('B' type) lined by cubidal epithelium and filled with colloid material. Parafollicular cells are also seen in the interfollicular space. X 400 Fig 1